通过增加EPR效应提高抗肿瘤药物递送效率的研究进展

王曦, 逯文敏, 贾菲, 王向涛

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (6) : 475-483.

PDF(1052 KB)
PDF(1052 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (6) : 475-483. DOI: 10.11669/cpj.2023.06.002
综述

通过增加EPR效应提高抗肿瘤药物递送效率的研究进展

  • 王曦1,2, 逯文敏1,2, 贾菲1,2, 王向涛1,2*
作者信息 +

Strategies to Improve Antitumor Drug Delivery by Increasing EPR Effect

  • WANG Xi1,2, LU Wen-min1,2, JIA Fei1,2, WANG Xiang-tao1,2*
Author information +
文章历史 +

摘要

在过去的几十年里,高渗透强滞留效应(enhanced permeability and retention effect,EPR) 成为抗肿瘤药物靶向递送的主要理论基础。由于EPR效应的问世,纳米技术在抗肿瘤研究领域引起了更多的关注。然而,由于复杂的肿瘤微环境、肿瘤异质性、小鼠肿瘤模型与临床肿瘤模型的差异,基于EPR效应的新药研究在临床试验中表现远低于预期。因此,研究者们从不同角度进行了很多探索,笔者从改善肿瘤微环境、纳米粒子的设计和修饰、物理辅助等方面综述了近年来提高EPR效应的策略,以及不依赖EPR效应的抗肿瘤药物递送技术,为抗肿瘤纳米药物的设计和临床转化提供新视角。

Abstract

In the past few decades, the enhanced permeability and retention effect (EPR) has been considered as the main theoretical base underlying the tumor targeted delivery of many drugs. Due to the advent of EPR effect, nanotechnology and nanomedicine have reached an unprecedented level in anti-tumor research. However, the complex tumor micro-environment and tumor heterogeneity together with the significant difference between mice-tumor models and human tumors led to the far short of expectation of EPR effect-based nanomedicine in the clinical trials for tumor treatment. In order to overcome this challenge, researchers have made a lot of efforts and explorations in different fields. In this review, the strategies recently developed to improve the EPR effect including those through the tumor micro-environment improvement, the rational design and modification of nanoparticles, and those assisted by physiotherapy, are summarized. In addition, the new strategies recently discovered that are independent on the EPR effect but successful in helping nanomedicine to penetrate into tumor are introduced as well to provide a new perspective for the design of nanomedicines and their clinical translation.

关键词

高渗透强滞留效应 / 肿瘤 / 纳米药物 / 靶向给药 / 肿瘤微环境

Key words

EPR effect / tumor / nanomedicine / targeted drug delivery / tumor micro-environment

引用本文

导出引用
王曦, 逯文敏, 贾菲, 王向涛. 通过增加EPR效应提高抗肿瘤药物递送效率的研究进展[J]. 中国药学杂志, 2023, 58(6): 475-483 https://doi.org/10.11669/cpj.2023.06.002
WANG Xi, LU Wen-min, JIA Fei, WANG Xiang-tao. Strategies to Improve Antitumor Drug Delivery by Increasing EPR Effect[J]. Chinese Pharmaceutical Journal, 2023, 58(6): 475-483 https://doi.org/10.11669/cpj.2023.06.002
中图分类号: R969.4   

参考文献

[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer Statistics, 2021. CA Cancer J Clin, 2021, 71(1):7-33.
[2] SULHEIM E, KIM J, VAN WAMEL A, et al. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. J Controlled Release, 2018, 279:292-305.
[3] SORRIN A J, KEMAL RUHI M, FERLIC N A, et al. Photodynamic therapy and the biophysics of the tumor microenvironment. Photochem Photobiol, 2020, 96(2):232-259.
[4] HONG J Y. Study on the anti-tumor synergistic effect of Panlisin nano-targeted preparation. Beijing:Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 2017.
[5] MAEDA H, WU J, SAWA T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J Controlled Release, 2000, 65(1-2):271-284.
[6] SINDHWANI S, SYED A M, NGAI J, et al. The entry of nanoparticles into solid tumours. Nat Mater, 2020, 19(5):566-575.
[7] TAN J, XIE Z L, SU Y Q, et al. Preparation of multifunctional chimeric peptide T7-R8/DNA nanocomplexes and evaluation of inhibiting melanoma cells in vitro. Chin Pharm J (中国药学杂志), 2021, 56(2):122-127.
[8] MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986, 46(12 Pt 1):6387-6392.
[9] GERMAIN M, CAPUTO F, METCALFE S, et al. Delivering the power of nanomedicine to patients today. J Controlled Release, 2020, 326:164-171.
[10] ZI Y, YANG K, HE J, et al. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev, 2022, 188:114449. Doi: 10.1016/j.addr.2022.114449.
[11] VENDITTO V J, SZOKA F C, J R. Cancer nanomedicines:so many papers and so few drugs!. Adv Drug Deliv Rev, 2013, 65(1):80-88.
[12] JAIN R K. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science, 2005, 307(5706):58-62.
[13] JACOBETZ M A, CHAN D S, NEESSE A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 2013, 62(1):112-120.
[14] DALY H C, CONROY E, TODOR M, et al. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Theranostics, 2020, 10(7):3064-3082.
[15] HE Z, YAN H, ZENG W, et al. Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe(2)O(4)-PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy. J Mater Chem B, 2021, 9(6):1625-1637.
[16] LIU S, LI W, GAI S, et al. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci, 2019, 7(3):951-962.
[17] GOLOMBEK S K, MAY J N, THEEK B, et al. Tumor targeting via EPR:Strategies to enhance patient responses. Adv Drug Deliv Rev, 2018, 130:17-38. Doi: 10.1016/j.addr.2018.07.007.
[18] ISLAM R, MAEDA H, FANG J. Factors affecting the dynamics and heterogeneity of the EPR effect:pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin Drug Deliv, 2022, 19(2):199-212.
[19] HUANG J, ZOU J N, REN H H, et al. Novel strategies for promoting tumor penetration of anticancer nanomedicines.. Acta Pharm Sin(药学学报), 2022, 57(6):1758-1770.
[20] SUN X, YAN X, JACOBSON O, et al. Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics, 2017, 7(2):319-328.
[21] TSOI K M, MACPARLAND S A, MA X Z, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater, 2016, 15(11):1212-1221.
[22] KANG H, RHO S, STILES W R, et al. Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Adv Healthc Mater, 2020, 9(1):e1901223. Doi: 10.1002/adhm.201901223.
[23] DREHER M R, LIU W, MICHELICH C R, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst, 2006, 98(5):335-344.
[24] PASTORE C. Size-dependent nano-bio interactions. Nat Nanotechnol, 2021, 16(10):1052. Doi: 10.1038/s41565-021-00996-z.
[25] PATTIPEILUHU R, ARIAS-ALPIZAR G, BASHA G, et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv Mater, 2022, 34(16):e2201095. Doi: 10.1038/s41565-021-00996-z.
[26] YANG Z Z, LI J Q, WANG Z Z, et al. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials, 2014, 35(19):5226-5239.
[27] ZHOU Y, LIU R, SHEVTSOV M, et al. When imaging meets size-transformable nanosystems. Adv Drug Deliv Rev, 2022, 183:114176. Doi: 10.1016/j.addr.2022.114176.
[28] CHENG X, LI H, GE X, et al. Tumor-microenvironment-responsive size-shrinkable drug-delivery nanosystems for deepened penetration into tumors. Front Mol Biosci, 2020, 7:576420. Doi: 10.3389/fmolb.2020.576420.
[29] DAS R P, GANDHI V V, SINGH B G, et al. Passive and active drug targeting:role of nanocarriers in rational design of anticancer formulations. Curr Pharm Des, 2019, 25(28):3034-3056.
[30] GOU J, LIANG Y, MIAO L, et al. Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles. Acta Biomater, 2017, 62:157-166.
[31] NATFJI A A, RAVISHANKAR D, OSBORN H M I, et al. Parameters affecting the enhanced permeability and retention effect:the need for patient selection. J Pharm Sci, 2017, 106(11):3179-3187.
[32] ANDERSON H, YAP J T, WELLS P, et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer, 2003, 89(2):262-267.
[33] MATTHEOLABAKIS G, MIKELIS C M. Nanoparticle delivery and tumor vascular normalization:the chicken or the Egg?. Front Oncol, 2019, 9:1227. Doi: 10.3389/fonc.2019.01227.
[34] MAEDA H, FANG J, INUTSUKA T, et al. Vascular permeability enhancement in solid tumor:various factors, mechanisms involved and its implications. Int Immunopharmacol, 2003, 3(3):319-328.
[35] LIU Y, LI Y, XUE G, et al. Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery. Acta Biomater, 2021, 128:474-485.
[36] SOANS K G, NORDEN C. Shining a light on extracellular matrix dynamics in vivo. Semin Cell Dev Biol, 2021, 120:85-93. Doi: 10.1016/j.semcdb.2021.05.008.
[37] ZHAO Y, CAO J, MELAMED A, et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc Natl Acad Sci U S A, 2019, 116(6):2210-2219.
[38] VAUPEL P, MAYER A, HÖCKEL M. Tumor hypoxia and malignant progression. Methods Enzymol, 2004, 381:335-354.
[39] CHEN X, ZHANG X, ZHANG L, et al. An EPR-independent therapeutic strategy: Cancer cell-mediated dual-drug delivery depot for diagnostics and prevention of hepatocellular carcinoma metastasis . Biomaterials, 2021, 268: 120541. DOI:10.1016/j.biomaterials.2020.120541
[40] LI X, ZHU D D, CHEN Y, et al. Progress in deep tumor penetration by nanoparticle-based drug delivery system in cancer therapy. Cent South Pharm(中南药学), 2020, 18(12):2009-2018.
[41] CABRAL H, MATSUMOTO Y, MIZUNO K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol, 2011, 6(12):815-823.
[42] DADPOUR S, MEHRABIAN A, ARABSALMANI M, et al. The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity. IET Nanobiotechnol, 2022, 16(7-8):259-272.
[43] ZHANG L, WANG Y, YANG D, et al. Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Mol Pharm, 2019, 16(7):2902-2911.
[44] WANG Y, BLACK K C, LUEHMANN H, et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano, 2013, 7(3):2068-2077.
[45] GUO Y, WANG T, ZHAO S, et al. Amphiphilic hybrid dendritic-linear molecules as nanocarriers for shape-dependent antitumor drug delivery. Mol Pharm, 2018, 15(7):2665-2673.
[46] CHEN D, GANESH S, WANG W, et al. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine (Lond), 2017, 12(17):2113-2135.
[47] CAMPBELL F, BOS F L, SIEBER S, et al. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS Nano, 2018, 12(3):2138-2150.
[48] HUANG K, BOERHAN R, LIU C, et al. Nanoparticles penetrate into the multicellular spheroid-on-chip:effect of surface charge, protein corona, and exterior flow. Mol Pharm, 2017, 14(12):4618-4627.
[49] IKEDA-IMAFUKU M, WANG L L, RODRIGUES D, et al. Strategies to improve the EPR effect:a mechanistic perspective and clinical translation. J Controlled Release, 2022, 345:512-536. Doi: 10.1073/pnas.1411499111.
[50] TANG L, YANG X, YIN Q, et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci USA, 2014, 111(43):15344-15349.
[51] WANG K W. Size-switchable polymeric nanocarriers for hypoxic-tumor therapy. Guangzhou:South China University of Technology, 2021.
[52] YE D, SHUHENDLER A J, CUI L, et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem, 2014, 6(6):519-526.
[53] XIONG H, WANG Z, WANG C, et al. Transforming complexity to simplicity:protein-like nanotransformer for improving tumor drug delivery programmatically. Nano Lett, 2020, 20(3):1781-1790.
[54] YE W, CHEN X, LI X, et al. Structure-switchable DNA programmed disassembly of nanoparticles for smart size tunability and cancer-specific drug release. ACS Appl Mater Interfaces, 2020, 12(20):22560-22571.
[55] SMITH B R, KEMPEN P, BOULEY D, et al. Shape matters:intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett, 2012, 12(7):3369-3377.
[56] LI Y, KRÖGER M, LIU W K. Shape effect in cellular uptake of PEGylated nanoparticles:comparison between sphere, rod, cube and disk. Nanoscale, 2015, 7(40):16631-16646.
[57] MA N, WU F G, ZHANG X, et al. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy:comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl Mater Interfaces, 2017, 9(15):13037-13048.
[58] TAHMASBI RAD A, CHEN C-W, ARESH W, et al. Combinational effects of active targeting, shape, and enhanced permeability and retention for cancer theranostic nanocarriers. ACS Appl Mater Interfaces, 2019, 11(11):10505-10519.
[59] WANG Z, WANG Y, JIA X, et al. MMP-2-Controlled transforming micelles for heterogeneic targeting and programmable cancer therapy. Theranostics, 2019, 9(6):1728-1740.
[60] GAN Z J,PEI J B. Enzyme-responsive nanoparticles in tumor therapy: superiority of nanoparticles inaccumulation and drug release. Chin J Tissue Eng Res(中国组织工程研究),2021,25(16):2562-2568.
[61] ZHANG M, CHEN X, LI C, et al. Charge-reversal nanocarriers:an emerging paradigm for smart cancer nanomedicine. J Controlled Release, 2020, 319:46-62.
[62] WANG S, ZHANG F, YU G, et al. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Theranostics, 2020, 10(15):6629-6637.
[63] SONG H, XING W, SHI X, et al. Antitumor and toxicity study of mitochondria-targeted triptolide derivatives using triphenylphosphine (TPP(+)) as a carrier. Bioorg Med Chem, 2021, 50:116466. Doi: 10.1016/j.bmc.2021.116466.
[64] YU H, LI J M, DENG K, et al. Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy. Theranostics, 2019, 9(23):7033-7050.
[65] WAN M M, CHEN H, DA WANG Z, et al. Nitric oxide-driven nanomotor for deep tissue penetration and multidrug resistance reversal in cancer therapy. Adv Sci (Weinh), 2021, 8(3):2002525. Doi: 10.1002/advs.202002525.
[66] ISLAM W, FANG J, IMAMURA T, et al. Augmentation of the enhanced permeability and retention effect with nitric oxide-generating agents improves the therapeutic effects of nanomedicines. Mol Cancer Ther, 2018, 17(12):2643-2653.
[67] SU B, CENGIZEROGLU A, FARKASOVA K, et al. Systemic TNFα gene therapy synergizes with liposomal doxorubicine in the treatment of metastatic cancer. Mol Ther, 2013, 21(2):300-308.
[68] LUO L, LIU S, ZHANG D, et al. Chromogranin A (CGA)-derived polypeptide (CGA47-66) inhibits TNF-α-induced vascular endothelial hyper-permeability through SOC-related Ca2+ signaling. Peptides, 2020, 131:170297. Doi: 10.1016/j.peptides.2020.170297.
[69] NAGAHARA R, ONDA N, YAMASHITA S, et al. Fluorescence tumor imaging by i.v. administered indocyanine green in a mouse model of colitis-associated colon cancer. Cancer Sci, 2018, 109(5):1638-1647.
[70] MAEDA H, NAKAMURA H, FANG J. The EPR effect for macromolecular drug delivery to solid tumors:improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev, 2013, 65(1):71-79.
[71] TUTEJA N, CHANDRA M, TUTEJA R, et al. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol, 2004, 2004(4):227-237.
[72] ALIMORADI H, GREISH K, GAMBLE A B, et al. Controlled delivery of nitric oxide for cancer therapy. Pharm Nanotechnol, 2019, 7(4):279-303.
[73] DONG X, LIU H J, FENG H Y, et al. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion. Nano Lett, 2019, 19(2):997-1008.
[74] SHI M, ZHANG J, WANG Y, et al. Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials, 2022, 283:121448. Doi: 10.1016/j.biomaterials.2022.121448.
[75] HOFMANN S, GRASBERGER H, JUNG P, et al. The tumour necrosis factor-alpha induced vascular permeability is associated with a reduction of VE-cadherin expression. Eur J Med Res, 2002, 7(4):171-176.
[76] MURATA T, LIN M I, ARITAKE K, et al. Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc Natl Acad Sci USA, 2008, 105(50): 20009-20014.
[77] HUANG D, SUN L, HUANG L, et al. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J Pers Med, 2021, 11(2):124. Doi: 10.3390/jpm11020124.
[78] TANAKA S, AKAIKE T, WU J, et al. Modulation of tumor-selective vascular blood flow and extravasation by the stable prostaglandin 12 analogue beraprost sodium. J Drug Target, 2003, 11(1):45-52.
[79] LIU Y, HASHIZUME K, CHEN Z, et al. Correlation between bradykinin-induced blood-tumor barrier permeability and B2 receptor expression in experimental brain tumors. Neurol Res, 2001, 23(4):379-387.
[80] BAZZI Z A, BALUN J, CAVALLO-MEDVED D, et al. Activated thrombin-activatable fibrinolysis inhibitor attenuates the angiogenic potential of endothelial cells:potential relevance to the breast tumour microenvironment. Clin Exp Metastasis, 2017, 34(2):155-169.
[81] MELINCOVICI C S, BOşCA A B,şUşMAN S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol, 2018, 59(2):455-467.
[82] ZHANG B, JIANG T, TUO Y, et al. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett, 2017, 410:12-19.
[83] WAHYUDI H, REYNOLDS A A, LI Y, et al. Targeting collagen for diagnostic imaging and therapeutic delivery. J Controlled Release, 2016, 240:323-331.
[84] ZINGER A, KOREN L, ADIR O, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 2019, 13(10):11008-11021.
[85] CHEN E, HAN S, SONG B, et al. Mechanism investigation of hyaluronidase-combined multistage nanoparticles for solid tumor penetration and antitumor effect. Int J Nanomed, 2020, 15:6311-6324.
[86] BREKKEN C, DE LANGE DAVIES C. Hyaluronidase reduces the interstitial fluid pressure in solid tumours in a non-linear concentration-dependent manner. Cancer Lett, 1998, 131(1):65-70.
[87] SEKI T, SAIDA Y, KISHIMOTO S, et al. PEGPH20, a PEGylated human hyaluronidase, induces radiosensitization by reoxygenation in pancreatic cancer xenografts. A molecular imaging study. Neoplasia, 2022, 30:100793. Doi: 10.1016/j.neo.2022.100793.
[88] MOROSI L, MERONI M, UBEZIO P, et al. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models. J Exp Clin Cancer Res, 2021, 40(1):286. Doi: 10.1186/s13046-021-02070-x.
[89] LIU P, WANG Y, LIU Y, et al. S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment. Theranostics, 2020, 10(15):6774-6789.
[90] FU Y, SARASWAT A L, MONPARA J, et al. Stromal disruption facilitating invasion of a ‘nano-arsenal’ into the solid tumor . Drug Discov Today, 2022, 27(4): 1132-1141.
[91] YOSHIDA E, KUDO D, NAGASE H, et al. 4-Methylumbelliferone decreases the hyaluronan-rich extracellular matrix and increases the effectiveness of 5-fluorouracil. Anticancer Res, 2018, 38(10):5799-5804.
[92] SUTO A, KUDO D, YOSHIDA E, et al. Increase of tumor infiltrating γδ T-cells in pancreatic ductal adenocarcinoma through remodeling of the extracellular matrix by a hyaluronan synthesis suppressor, 4-methylumbelliferone. Pancreas, 2019, 48(2):292-298.
[93] CHEN Y, LIU X, YUAN H, et al. Therapeutic remodeling of the tumor microenvironment enhances nanoparticle delivery. Adv Sci (Weinh), 2019, 6(5):1802070. Doi: 10.1002/advs.201802070.
[94] LI Y, ZHAO Z, LIU H, et al. Development of a tumor-responsive nanopolyplex targeting pancreatic cancer cells and stroma. ACS Appl Mater Interfaces, 2019, 11(49):45390-45403.
[95] CARIGGA GUTIERREZ N M, PUJOL-SOLÉN, ARIFI Q, et al. Increasing cancer permeability by photodynamic priming:from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev, 2022, 41(4): 899-934.
[96] HATFIELD S M, KJAERGAARD J, LUKASHEV D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med, 2015, 7(277):277ra230. Doi:10.1126/scitranslmed.aaa1260.
[97] CAVIN S, RIEDEL T, ROSSKOPFOVA P, et al. Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility. Laser Surg Med, 2019, 51(6):550-561.
[98] OVERCHUK M, HARMATYS K M, SINDHWANI S, et al. Subtherapeutic photodynamic treatment facilitates tumor nanomedicine delivery and overcomes desmoplasia. Nano Lett, 2021, 21(1):344-352.
[99] DUNNE M, REGENOLD M, ALLEN C. Hyperthermia can alter tumor physiology and improve chemo-and radio-therapy efficacy. Adv Drug Deliv Rev, 2020, 163-164:98-124.
[100] SEYNHAEVE A L B, AMIN M, HAEMMERICH D, et al. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev, 2020, 163-164:125-144.
[101] HAEMMERICH D, MOTAMARRY A. Thermosensitive liposomes for image-guided drug delivery. Adv Cancer Res, 2018, 139:121-146.
[102] ZHU M X. Tumor microenvironment-responsive polydopamine nanomotors for synergistictumor therapy. Hangzhou:Zhe Jiang University, 2022.
[103] GAO Y, HUANG W, YANG C, et al. Targeted photothermal therapy of mice and rabbits realized by macrophage-loaded tungsten carbide. Biomater Sci, 2019, 7(12):5350-5358.
[104] ZUO C, ZOU Y, GAO G, et al. Photothermal combined with intratumoral injection of annonaceous acetogenin nanoparticles for breast cancer therapy. Colloids Surf B Biointerfaces, 2022, 213:112426. Doi: 10.1016/j.colsurfb.2022.112426. 104.
[105] HUA S, HE J, ZHANG F, et al. Multistage-responsive clustered nanosystem to improve tumor accumulation and penetration for photothermal/enhanced radiation synergistic therapy. Biomaterials, 2021, 268:120590. Doi:10.1016/j.biomaterials.2020.120590.
[106] THEEK B, BAUES M, OJHA T, et al. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J Controlled Release, 2016, 231:77-85.
[107] OJHA T, PATHAK V, SHI Y, et al. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv Drug Deliv Rev, 2017, 119:44-60.
[108] CAO Y, CHEN Y, YU T, et al. Drug release from phase-changeable nanodroplets triggered by Low-Intensity Focused Ultrasound. Theranostics, 2018, 8(5):1327-1339.
[109] DUAN L, YANG L, JIN J, et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10(2):462-483.
[110] WU H, LI W, HAO M, et al. An EPR-Independent extravasation strategy:deformable leukocytes as vehicles for improved solid tumor therapy. Adv Drug Deliv Rev, 2022, 187:114380. Doi: 10.1016/j.addr.2022.114380.
[111] MANTOVANI A, MARCHESI F, JAILLON S, et al. Tumor-associated myeloid cells:diversity and therapeutic targeting. Cell Mol Immunol, 2021, 18(3):566-578.
[112] MULLER W A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol, 2003, 24(6):327-334.
[113] ZHOU Q, DONG C, FAN W, et al. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy:the current status and transcytosis strategy. Biomaterials, 2020, 240:119902. Doi: 10.1016/j.biomaterials.2020.119902.
[114] MORENO V M, BAEZA A. Bacteria as nanoparticle carriers for immunotherapy in oncology. Pharmaceutics, 2022,14(4):784. Doi: 10.3390/pharmaceutics14040784.
[115] SWETHA K L, ROY A. Tumor heterogeneity and nanoparticle-mediated tumor targeting:the importance of delivery system personalization. Drug Deliv Transl Res, 2018, 8(5):1508-1526.
[116] GHAFOOR S, BURGER I A, VARGAS A H. Multimodality imaging of prostate cancer. J Nucl Med, 2019, 60(10):1350-1358.

基金

中国医学科学院医学与健康创新工程项目资助(2021-I2M-1-071)
PDF(1052 KB)

1356

Accesses

0

Citation

Detail

段落导航
相关文章

/